

at AUBURN UNIVERSITY

# **CA and USB Sections**

Nam Tran

NCAT TEST TRACK CONFERENCE

SEVENTH RESEARCH CYCLE





- To design, produce and pave asphalt mixes with biobased materials on Test Track
- To compare their field performance with that of conventional asphalt mixtures





#### **Collaborative Aggregates Study**





















# Performance from 5/12/2016



Lift 2

Lift 1

2.25

1.50

Both designed as Superpave mixtures to meet volumetric requirements with performance verification

#### **Laboratory Performance Testing**

| Mixture              | Extracted |                 |
|----------------------|-----------|-----------------|
|                      | PG        | ΔΤ <sub>c</sub> |
| N1 20% RAP           | 88.6–16.6 | -9.4            |
| N7 35% RAP + Delta S | 94.5–16.4 | -10.1           |

| Mixture              | Texas OT<br>(Nf) | I-FIT (FI) |
|----------------------|------------------|------------|
| N1 20% RAP           | 25 (A)           | 3.58(A)    |
| N7 35% RAP + Delta S | 10 (A)           | 3.43(A)    |



#### Bottom-up cracking due to rapid reconstruction in 2016











- Some reaction time needed when using Delta S with southeastern postconsumer RAS
- Lab cracking tests suggest N7 and N1 having similar performance
- Section N7 failed due to bottom-up cracking, possibly caused by rapid reconstruction in 2016
- Middle section repaired after about 14 MESALs in May 2020; the other last to the end of research cycle in March 2021 (17.5 MESALs)
- Lessons learned from N7 have led to other implementation efforts: <u>https://youtu.be/TKFYk1NIB-Q</u>

### **United Soybean Board Study**



### **Two Surface Mixtures**



Both designed as Superpave mixes to meet the volumetric requirements

#### Construction

| Section | In-place Density |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N.C. |
|---------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| E5A     | 93.6%            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| W10     | 93.3%            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|         |                  | A second of the second se |      |
|         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 16      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |













W10 and E5A mixes were designed to meet the volumetric requirements

■ Both mixes were compacted to achieve similar density (~ 93.5%)

Two mixes have relatively low lab cracking test results with E5A showing slightly better results

Initial cracking observed in E5A while no cracking seen in W10 after 10 MESALs

#### **Questions and Answers**



**SEVENTH** RESEARCH CYCLE

## NCAT TEST TRACK CONFERENCE