

Design & Construction of 70th Street Recycled Sections at MnRoad Dr. Benjamin Bowers, PE NCAT TEST TRACK CONFERENCE

SEVENTH RESEARCH CYCLE

Outline

- Project overview
- **Construction**
- Laboratory Testing Program

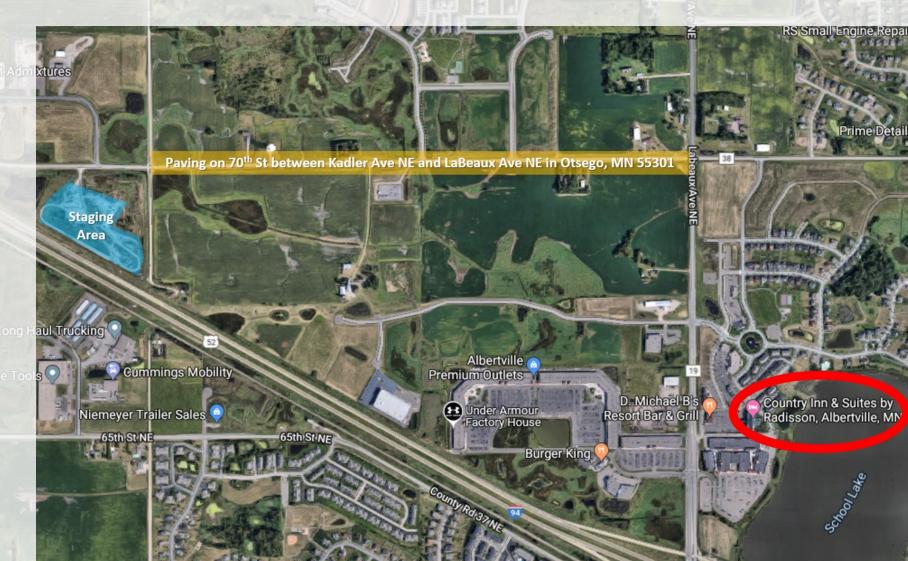
SEVENTH

RESEARCH CYCLE

Conclusions

Project Overview

 MnRoad Partnership with NCAT, part of Pavement Preservation evaluation project


Existing:

4 inches of asphalt pavement

G 6 inches granular base

Clay subgrade

Heavily distressed

Kaleidoscop Charter Scho

Project Overview

- □ Two-lanes, 500 foot sections
- CIR, CCPR, FDR with foamed and emulsified recycling/stabilizing agents
- New sections
 - **CIR and CCPR 4 inches**
 - **D** FDR 7 inches
 - All with 1 inch thinlay
- Monitored by MnRoad
- Materials collected for laboratory testing

	Westbound	Lane							
	7001W	7002W	7003W	7004W	7005W	7006W	7007W	7008W	
	1" Thinlay 4" Existing	1" Thinlay 4" Existing	1" Thinlay 4" Existing	1" Thinlay 4" Existing	1" Thinlay 4" Existing	1" Thinlay 2" Mill & Inlay 2" Existing	1" Thinlay 3" CCPR Foam 1" Existing	1" Thinlay 4" Existing	
West Limits – Kadler Ave	1" Thinlay 7" SFDR Emulsion	1" Thinlay 7" SFDR Foam	1" Thinlay 3" CIR Foam 1" Existing	1" Thinlay 3" CIR Emulsion 1" Existing	1" Thinlay 3" CCPR Emulsion 1" Existing	1" Thinlay 3" Mill & Inlay 1" Existing	1" Thinlay 3" CCPR Foam 1" Existing	1" Thinlay 4" Existing	– Labeaux Ave
West Limits	7001E Eastbound Li	7002E ane	7003E	7004E	7005E	7006E	7007E	7008E	East Limits

Photo credit: Vargas

SEVENTH RESEARCH CYCLE

Mix Design Information

Designers:

- **D** CIR/CCPR Foam NCAT
- **CIR/CCPR Emulsion Ingevity**
- **D** FDR Foam and Emulsion American Engineering Testing
- □ Foam = PG58-28; expansion ratio = 9, half life = 6.2
- Emulsion = PG58-28 base asphalt

Mixture	CII	R-E	CIR-F	CCPR-E	CCPR-F	FDR-E	FDR-F
Method	Medium Mix Design	Coarse Mix Design	Mix Design				
Agent Content, %	3.0	2.5	2.6	3.5	2.3	3.0	2.0
Active Filler Content, %	N/A	N/A	1.0	N/A	1.0	1.0	1.0
Moisture Content, %	3.0	2.8	4.5	3.7	4.5	6.0	7.2

SEVENTH RESEARCH CYCLE

Photo credit: Allain

Mix Design Information

- □ Foam designs required to meet dry ITS = 45 psi and TSR = 0.70
 - **D** FDR-F design did not meet the required TSR
- Emulsion designs required to meet 4" diameter stability = 1250 lb and retained stability of 0.70
 FDR-E design did not meet the required retained stability (~0.60)

SEVENTH RESEARCH CYCLE

Construction

SEVENTH RESEARCH CYCLE

Before

- Rapid Tests and Specifications for Construction of Asphalt-Treated Cold Recycled Pavements
 VTRC, UCPRC, UNR, VT, Auburn
- Developed a test that evaluates whether CIR, CCPR, and FDR (bituminously stabilized) are ready for opening to traffic
 - **Based on vane shear test**
 - **D** Uses DCP to sink pins into pavement
 - **D** Torque wrench to shear
 - Non-destructive
 - Long pin (shear) and short pin (raveling)
- Used MnRoad project for ILS


Photo credit: NCHRP 9-62 Webinar

SEVENTH RESEARCH CYCLE

NCHRP 09-62

- Preliminary recommendations below
- More info in NCHRP Report 490
 <u>https://www.nap.edu/login.php?record_id=25971</u>

Recommended Tests	Properties	Mean	Pooled σ	Threshold Value (Average of 3 Tests)
Short-Pin Raveling Test (SPRT)	Number of Blows	8.4	0.8	7.1
	Torque, ft-lb	24.3	2.5	20.2
Long-Pin Shear Test (LPRT)	Number of Blows	22.8	2.1	19.3
	Torque, ft-lb	76.4	8.2	62.9

Credit: NCHRP 9-62 Webinar

SEVENTH RESEARCH CYCLE

Post-Construction

- Road condition prior to paving = "poor"
 IRI > 300 in/mi
- Road condition *after* paving = "good"
 avg IRI = 75 in/mi
- Periodic testing:
 - **D** Cracking
 - **D** Rutting
 - **D** Roughness
 - **D** Structural condition

Photo credit: Vargas

SEVENTH RESEARCH CYCLE

Laboratory Program

□ Indirect Tensile Test (foam) and Marshall Stability (emulsion)

Lab mixed from field collected materials

Dideal-Ct

- **Lab** mixed from field collected materials
- □ Hamburg rutting
 - **D** Lab mixed from field collected materials
- **Dynamic modulus**
 - **Lab** mixed from field collected materials

SEVENTH

RESEARCH CYCLE

- **Lab** *compacted* from *field mixed* materials
- **□** Field cores

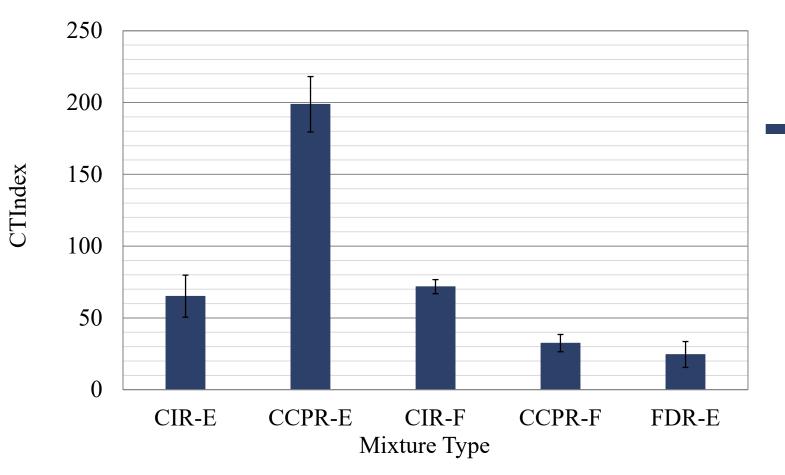
IDT and Marshall stability

□ As-Built Mixture Acceptance Criteria

SEVENTH

RESEARCH CYCLE

D Note: Construction phase recorded mixture properties informed laboratory as-built mixture production


Mixture	CIR-E			CCPR-E		CIR-F		CCPR-F		FDR-E		
Method	Medium Mix Design	Coarse Mix Design	As-Built	Mix Design	As-Built	Minimum, Req.						
Dry ITS, psi	N/A	N/A	N/A	N/A	N/A	51.9	46.8	50.2	43.0	N/A	N/A	45
Conditioned ITS, psi	N/A	N/A	N/A	N/A	N/A	44.0	42.5	44.7	39.5	N/A	N/A	
TSR	N/A	N/A	N/A	N/A	N/A	0.85	0.91	0.89	0.92	N/A	N/A	0.70
Dry MS, lbf	2335	2190	1354	2113	1397	N/A	N/A	N/A	N/A	2382	2460	1250
Conditioned MS, lbf	2030	1870	2166	1765	1561	N/A	N/A	N/A	N/A	3825	2131	
MSR	0.87	0.85	1.60	0.84	1.12	N/A	N/A	N/A	N/A	0.62	0.87	0.70

IDEAL-CT

- CCPR-E had the highest IDEAL-CT
- **FDR-E** was the lowest
- CIR ranged between 65.1-71.8 on average

SEVENTH

RESEARCH CYCLE

¹Zhou 2019

Mixture	CIR-E	CCPR-E	CIR-F	CCPR-F	FDR-E	HMA (PG 58-28) w/ 40% RAP Binder Content	HMA (PG 64-22) w/ 20% RAS Binder Content
CTIndex	65.1	198.8	71.8	32.4	24.6	160 ¹	45.2 ¹
Std. Dev.	14.6	19.3	4.9	6	9		

Hamburg Rutting

CIR-E

CIR-F

CCPR-F

FDR-E

HMA

CCPR-E SEVENTH RESEARCH CYCLE

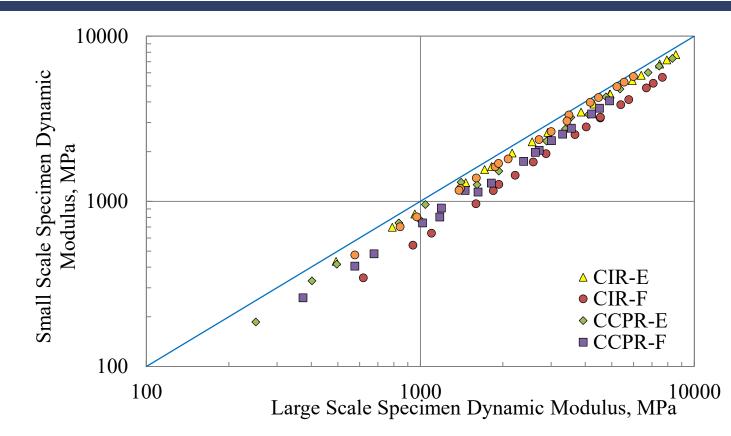
Dynamic Modulus

- **Conducted on Full-size:**
 - Lab Produced, Lab CompactedField Produced, Lab Compacted

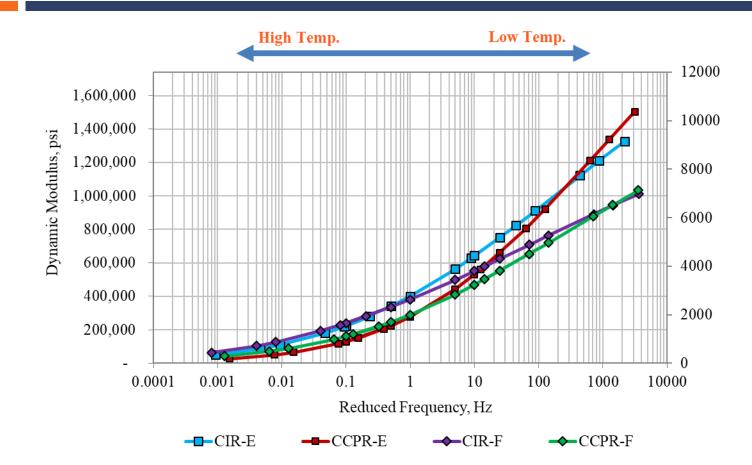
SEVENTH

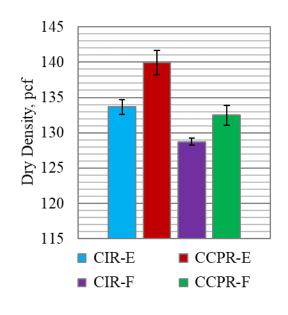
RESEARCH CYCLE

Conducted on Small-size
 Lab Produced, Lab Compacted
 Field Produced, Field Compacted (Cores)



Small vs Large Samples


- Can we use small-scale specimens in lieu of full-size for cold recycled mixtures?
 - □ Generally, yes
 - **D** Some offset may need to be applied
 - **D** Overall trends are the same



NCAT TEST TRACK CONFERENCE

SEVENTH RESEARCH CYCLE

Dynamic Modulus and Density

NCAT TEST TRACK CONFERENCE

SEVENTH RESEARCH CYCLE

In Conclusion

- **Some variability between field and mix design**
- We have a lot of interesting laboratory data
 - **CR** mixes can get decent IDEAL-CT numbers
 - **Hamburg rutting probably isn't ideal**

SEVENTH

RESEARCH CYCLE

- **D**ynamic modulus may need some shift factors
- Connecting that information with *long-term* field performance will be important
 - Jerry will cover field performance to-date!

Special thanks...

Adriana Vargas and Buzz Powell

SEVENTH

- David Allain thesis "Evaluation of Laboratory and Field Produced Cold Recycled and Full Depth Reclaimed Asphalt Pavement Materials"
- Jenna Bowers
- □ The NCAT lab team
- □ The MnRoad team
- □ NCHRP 09-62 team

RESEARCH CYCLE

□ Many others...

Questions and Answers

SEVENTH RESEARCH CYCLE